Marketing and Commercialization Center, JD.com
Abstract:The Traveling Salesman Problem (TSP) is one of the most representative NP-hard problems in route planning and a long-standing benchmark in combinatorial optimization. Traditional heuristic tour constructors, such as Farthest or Nearest Insertion, are computationally efficient and highly practical, but their deterministic behavior limits exploration and often leads to local optima. In contrast, neural-based heuristic tour constructors alleviate this issue through guided-sampling and typically achieve superior solution quality, but at the cost of extensive training and reliance on ground-truth supervision, hindering their practical use. To bridge this gap, we propose TSP-MDF, a novel instance modification framework that equips traditional deterministic heuristic tour constructors with guided-sampling capability. Specifically, TSP-MDF introduces a neural-based instance modifier that strategically shifts node coordinates to sample multiple modified instances, on which the base traditional heuristic tour constructor constructs tours that are mapped back to the original instance, allowing traditional tour constructors to explore higher-quality tours and escape local optima. At the same time, benefiting from our instance modification formulation, the neural-based instance modifier can be trained efficiently without any ground-truth supervision, ensuring the framework maintains practicality. Extensive experiments on large-scale TSP benchmarks and real-world benchmarks demonstrate that TSP-MDF significantly improves the performance of traditional heuristics tour constructors, achieving solution quality comparable to neural-based heuristic tour constructors, but with an extremely short training time.
Abstract:Spectral gradient methods, such as the Muon optimizer, modify gradient updates by preserving directional information while discarding scale, and have shown strong empirical performance in deep learning. We investigate the mechanisms underlying these gains through a dynamical analysis of a nonlinear phase retrieval model with anisotropic Gaussian inputs, equivalent to training a two-layer neural network with the quadratic activation and fixed second-layer weights. Focusing on a spiked covariance setting where the dominant variance direction is orthogonal to the signal, we show that gradient descent (GD) suffers from a variance-induced misalignment: during the early escaping stage, the high-variance but uninformative spike direction is multiplicatively amplified, degrading alignment with the true signal under strong anisotropy. In contrast, spectral gradient descent (SpecGD) removes this spike amplification effect, leading to stable alignment and accelerated noise contraction. Numerical experiments confirm the theory and show that these phenomena persist under broader anisotropic covariances.
Abstract:Large Language Models (LLMs) can be fine-tuned on domain-specific data to enhance their performance in specialized fields. However, such data often contains numerous low-quality samples, necessitating effective data processing (DP). In practice, DP strategies are typically developed through iterative manual analysis and trial-and-error adjustment. These processes inevitably incur high labor costs and may lead to privacy issues in high-privacy domains like healthcare due to direct human access to sensitive data. Thus, achieving automated data processing without exposing the raw data has become a critical challenge. To address this challenge, we propose LLM-AutoDP, a novel framework that leverages LLMs as agents to automatically generate and optimize data processing strategies. Our method generates multiple candidate strategies and iteratively refines them using feedback signals and comparative evaluations. This iterative in-context learning mechanism enables the agent to converge toward high-quality processing pipelines without requiring direct human intervention or access to the underlying data. To further accelerate strategy search, we introduce three key techniques: Distribution Preserving Sampling, which reduces data volume while maintaining distributional integrity; Processing Target Selection, which uses a binary classifier to identify low-quality samples for focused processing; Cache-and-Reuse Mechanism}, which minimizes redundant computations by reusing prior processing results. Results show that models trained on data processed by our framework achieve over 80% win rates against models trained on unprocessed data. Compared to AutoML baselines based on LLM agents, LLM-AutoDP achieves approximately a 65% win rate. Moreover, our acceleration techniques reduce the total searching time by up to 10 times, demonstrating both effectiveness and efficiency.
Abstract:Fine-tuning Large Language Models (LLMs) with downstream data is often considered time-consuming and expensive. Structured pruning methods are primarily employed to improve the inference efficiency of pre-trained models. Meanwhile, they often require additional time and memory for training, knowledge distillation, structure search, and other strategies, making efficient model fine-tuning challenging to achieve. To simultaneously enhance the training and inference efficiency of downstream task fine-tuning, we introduce GradPruner, which can prune layers of LLMs guided by gradients in the early stages of fine-tuning. GradPruner uses the cumulative gradients of each parameter during the initial phase of fine-tuning to compute the Initial Gradient Information Accumulation Matrix (IGIA-Matrix) to assess the importance of layers and perform pruning. We sparsify the pruned layers based on the IGIA-Matrix and merge them with the remaining layers. Only elements with the same sign are merged to reduce interference from sign variations. We conducted extensive experiments on two LLMs across eight downstream datasets. Including medical, financial, and general benchmark tasks. The results demonstrate that GradPruner has achieved a parameter reduction of 40% with only a 0.99% decrease in accuracy. Our code is publicly available.
Abstract:Reading order detection is the foundation of document understanding. Most existing methods rely on uniform supervision, implicitly assuming a constant difficulty distribution across layout regions. In this work, we challenge this assumption by revealing a critical flaw: \textbf{Positional Disparity}, a phenomenon where models demonstrate mastery over the deterministic start and end regions but suffer a performance collapse in the complex intermediate sections. This degradation arises because standard training allows the massive volume of easy patterns to drown out the learning signals from difficult layouts. To address this, we propose \textbf{FocalOrder}, a framework driven by \textbf{Focal Preference Optimization (FPO)}. Specifically, FocalOrder employs adaptive difficulty discovery with exponential moving average mechanism to dynamically pinpoint hard-to-learn transitions, while introducing a difficulty-calibrated pairwise ranking objective to enforce global logical consistency. Extensive experiments demonstrate that FocalOrder establishes new state-of-the-art results on OmniDocBench v1.0 and Comp-HRDoc. Our compact model not only outperforms competitive specialized baselines but also significantly surpasses large-scale general VLMs. These results demonstrate that aligning the optimization with intrinsic structural ambiguity of documents is critical for mastering complex document structures.
Abstract:Document layout analysis aims to detect and categorize structural elements (e.g., titles, tables, figures) in scanned or digital documents. Popular methods often rely on high-quality Optical Character Recognition (OCR) to merge visual features with extracted text. This dependency introduces two major drawbacks: propagation of text recognition errors and substantial computational overhead, limiting the robustness and practical applicability of multimodal approaches. In contrast to the prevailing multimodal trend, we argue that effective layout analysis depends not on text-visual fusion, but on a deep understanding of documents' intrinsic visual structure. To this end, we propose PARL (Position-Aware Relation Learning Network), a novel OCR-free, vision-only framework that models layout through positional sensitivity and relational structure. Specifically, we first introduce a Bidirectional Spatial Position-Guided Deformable Attention module to embed explicit positional dependencies among layout elements directly into visual features. Second, we design a Graph Refinement Classifier (GRC) to refine predictions by modeling contextual relationships through a dynamically constructed layout graph. Extensive experiments show PARL achieves state-of-the-art results. It establishes a new benchmark for vision-only methods on DocLayNet and, notably, surpasses even strong multimodal models on M6Doc. Crucially, PARL (65M) is highly efficient, using roughly four times fewer parameters than large multimodal models (256M), demonstrating that sophisticated visual structure modeling can be both more efficient and robust than multimodal fusion.




Abstract:As Earth's climate changes, it is impacting disasters and extreme weather events across the planet. Record-breaking heat waves, drenching rainfalls, extreme wildfires, and widespread flooding during hurricanes are all becoming more frequent and more intense. Rapid and efficient response to disaster events is essential for climate resilience and sustainability. A key challenge in disaster response is to accurately and quickly identify disaster locations to support decision-making and resources allocation. In this paper, we propose a Probabilistic Cross-view Geolocalization approach, called ProbGLC, exploring new pathways towards generative location awareness for rapid disaster response. Herein, we combine probabilistic and deterministic geolocalization models into a unified framework to simultaneously enhance model explainability (via uncertainty quantification) and achieve state-of-the-art geolocalization performance. Designed for rapid diaster response, the ProbGLC is able to address cross-view geolocalization across multiple disaster events as well as to offer unique features of probabilistic distribution and localizability score. To evaluate the ProbGLC, we conduct extensive experiments on two cross-view disaster datasets (i.e., MultiIAN and SAGAINDisaster), consisting diverse cross-view imagery pairs of multiple disaster types (e.g., hurricanes, wildfires, floods, to tornadoes). Preliminary results confirms the superior geolocalization accuracy (i.e., 0.86 in Acc@1km and 0.97 in Acc@25km) and model explainability (i.e., via probabilistic distributions and localizability scores) of the proposed ProbGLC approach, highlighting the great potential of leveraging generative cross-view approach to facilitate location awareness for better and faster disaster response. The data and code is publicly available at https://github.com/bobleegogogo/ProbGLC
Abstract:Vision-language models (VLM) excel at general understanding yet remain weak at dynamic spatial reasoning (DSR), i.e., reasoning about the evolvement of object geometry and relationship in 3D space over time, largely due to the scarcity of scalable 4D-aware training resources. To bridge this gap across aspects of dataset, benchmark and model, we introduce DSR Suite. First, we propose an automated pipeline that generates multiple-choice question-answer pairs from in-the-wild videos for DSR. By leveraging modern vision foundation models, the pipeline extracts rich geometric and motion information, including camera poses, local point clouds, object masks, orientations, and 3D trajectories. These geometric cues enable the construction of DSR-Train for learning and further human-refined DSR-Bench for evaluation. Compared with previous works, our data emphasize (i) in-the-wild video sources, (ii) object- and scene-level 3D requirements, (iii) viewpoint transformations, (iv) multi-object interactions, and (v) fine-grained, procedural answers. Beyond data, we propose a lightweight Geometry Selection Module (GSM) to seamlessly integrate geometric priors into VLMs, which condenses question semantics and extracts question-relevant knowledge from pretrained 4D reconstruction priors into a compact set of geometry tokens. This targeted extraction avoids overwhelming the model with irrelevant knowledge. Experiments show that integrating DSR-Train and GSM into Qwen2.5-VL-7B significantly enhances its dynamic spatial reasoning capability, while maintaining accuracy on general video understanding benchmarks.
Abstract:Conventional Sequential Recommender Systems (SRS) typically assign unique Hash IDs (HID) to construct item embeddings. These HID embeddings effectively learn collaborative information from historical user-item interactions, making them vulnerable to situations where most items are rarely consumed (the long-tail problem). Recent methods that incorporate auxiliary information often suffer from noisy collaborative sharing caused by co-occurrence signals or semantic homogeneity caused by flat dense embeddings. Semantic IDs (SIDs), with their capability of code sharing and multi-granular semantic modeling, provide a promising alternative. However, the collaborative overwhelming phenomenon hinders the further development of SID-based methods. The quantization mechanisms commonly compromise the uniqueness of identifiers required for modeling head items, creating a performance seesaw between head and tail items. To address this dilemma, we propose \textbf{\name}, a novel framework that harmonizes the SID and HID. Specifically, we devise a dual-branch modeling architecture that enables the model to capture both the multi-granular semantics within SID while preserving the unique collaborative identity of HID. Furthermore, we introduce a dual-level alignment strategy that bridges the two representations, facilitating knowledge transfer and supporting robust preference modeling. Extensive experiments on three real-world datasets show that \name~ effectively balances recommendation quality for both head and tail items while surpassing the existing baselines. The implementation code can be found online\footnote{https://github.com/ziwliu8/H2Rec}.




Abstract:In recent years, unmanned aerial vehicles (UAVs) have become a key role in wireless communication networks due to their flexibility and dynamic adaptability. However, the openness of UAV-based communications leads to security and privacy concerns in wireless transmissions. This paper investigates a framework of UAV covert communications which introduces flexible reconfigurable intelligent surfaces (F-RIS) in UAV networks. Unlike traditional RIS, F-RIS provides advanced deployment flexibility by conforming to curved surfaces and dynamically reconfiguring its electromagnetic properties to enhance the covert communication performance. We establish an electromagnetic model for F-RIS and further develop a fitted model that describes the relationship between F-RIS reflection amplitude, reflection phase, and incident angle. To maximize the covert transmission rate among UAVs while meeting the covert constraint and public transmission constraint, we introduce a strategy of jointly optimizing UAV trajectories, F-RIS reflection vectors, F-RIS incident angles, and non-orthogonal multiple access (NOMA) power allocation. Considering this is a complicated non-convex optimization problem, we propose a deep reinforcement learning (DRL) algorithm-based optimization solution. Simulation results demonstrate that our proposed framework and optimization method significantly outperform traditional benchmarks, and highlight the advantages of F-RIS in enhancing covert communication performance within UAV networks.